DEPARTMENT OF MANAGEMENT STUDIES

SEMESTER 2& 4 ATKT INTERNALS QUESTIONS:

• INDUSTRIAL LAW –

1101

- 1. What is Gratuity? Under what circumstances gratuity is payable?
- 2. Define Closure and explain the rules of closure.
- 3. Retrenchment
- 4. Board of Conciliation
- 5. What do you understand by Nomination?

• BUSINESS MATHEMATICS –

<u>1005</u>

1	Solve the	e linea	ar equati	ons using	Cramer's	Rule	Solve the linear equations using Cramer's Rule						
	x + 2y +	x + 2y + z = 0, $2x + y + z = 2$, $4x-3y-3z = 20$											
2	Solve the	e linea	ar equati	ons using	Cramer's	Rule							
	2x+3y+	2 z=5	, 3x-2y	- z=11 ,4x	x+6y +8z	= 20							
3	Solve the	e Equ	ation										
		₁ 6	5 7	ı									
		2	9	31	=0								
		$\begin{bmatrix} 6 & 5 & 7 \\ 2 & 9 & 31 \\ 9 & 12 & 4X+1 \end{bmatrix} = 0$											
4	Using Newton's backward difference interpolation formula find the polynomial f(x) whose												
	graph passes through the points $(0,5)(1,4),(2,6),(3,8)$												
5	Find f(70) using Newton's forward difference Interpolation formula												
	X	19	39	59	79	99							
	F(x)	61	123	148	208	215							

<u>1061</u>

1	Find f(7	'2) usii	ng Newt	on's forw	ard differe	ence Inte	erpolation formula
	X	19	39	59	79	99	
	F(x)	41	103	168	218	235	
2	Solve th	ne line	ar equa	tions usir	g Crame	r's Rule	
	2x+y+2z=5, $3x-y-z=11$, $4x+7y+8z=20$						
3	Solve th	ne Equ	ation				
				7			
				31	= 0		
		9	15 23	X+1			
4	Using Newton's backward difference interpolation formula find the polynomial f(x) whose						
	graph passes through the points $(0,5)(1,4),(2,6)$						
5	Find f(70) using Newton's forward difference Interpolation formula						
	X	19	39	59	79	99	
	F(x)	31	106	178	208	235	

<u>1101</u>

1	Find f(74) using Newton's forward difference Interpolation formula							
	X	19	39	59	79	99		
	F(x)	41	103	168	218	235		
2	Find dy	/dx w	here y =	$(x^4+x-1)/$	$(6x^4-8)$.			
3	Solve th	ne Equ	ation					
		2 X	1	1				
		1	X	1 1 3X	: 0			
		1	1 3	3X				
4				100				
	Write d					each elei	ment of the Matrix	
	$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 6 \\ 3 & 5 & 1 \end{pmatrix}$							
				2 0 5 1				
			(3	3 1)				
5	Solve th	ne Equ	ation					
				1				
		1	9	31	= 0			
		9	12 32	X+1				

<u>1115</u>

1113	
1	Using properties of determinant solve the following equation
	$ \begin{vmatrix} a+x & a-x & a$
2	Find dy/dx where $y = (x^3+9x-1)/(x^4-27)$.
3	Solve the Equation
4	Write down Minors and Cofactors of each element of the Matrix $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 4 & 6 \\ 3 & 5 & 5 \end{pmatrix}$
5	Solve the Equation $ \begin{vmatrix} 3 & 5 & 7 \\ 7 & 9 & 31 \\ 9 & 15 & 4X+1 \end{vmatrix} = 0 $

1144 (Isha)

1	Using properties of determinant solve the following equation							
	$\begin{vmatrix} a+x & a-x & a-x & \\ a-x & a+x & a-x & \\ a+x & a-x & a+x & \end{vmatrix} = 0$							
	a+x a-x a+x							
2	Find dy/dx where $y = (x^4+x-1)/(6x^4-8)$.							
3	Solve the Equation							
	$\begin{vmatrix} 2X & 1 & 1 \\ 1 & X & 1 \\ 1 & 1 & 3X \end{vmatrix} = 0$							

4	Write down Minors and Cofactors of each element of the Matrix $\begin{pmatrix} 0 & 1 & 6 \\ 1 & 2 & 6 \\ 3 & 5 & 1 \end{pmatrix}$
5	Solve the Equation $ \begin{vmatrix} 3 & 5 & 6 \\ 1 & 9 & 31 \\ 9 & 15 & 2X+1 \end{vmatrix} = 0 $

<u>1164</u>

1	Using properties of determinant solve the following equation					
	a+xa+x a-x					
	$\begin{vmatrix} a-x & a-xa-x \\ a-x & a-xa-x \end{vmatrix} = 0$					
2	Find dy/dx where $y = (x^3+x-1)/(x^4-2)$.					
3	Solve the linear equations using Cramer's Rule					
	x + y + z = 0, 2x + y + z = 2, 4x - y - 3z = 20					
4	Solve the Equation					
	$\begin{vmatrix} X & 1 & 1 \\ 1 & 2X & 1 \\ 1 & 1 & 5X \end{vmatrix} = 0$					
5	Write down Minors and Cofactors of each element of the Matrix					
	$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$					

<u>1179</u>

1	Solve the Equation
	Solve the Equation 4 9 7 1 5 31 = 0 9 15 4X+1 Solve the linear equations using Cramer's Rule
	1 5 31 = 0
	9 15 4X+1
2	Solve the linear equations using Cramer's Rule
	2x+y+z=5, $7x-y-3z=11$, $5x+2y+2z=20$
3	Solve the Equation
	2 X 4 3
	$\begin{vmatrix} 2X & 4 & 3 \\ 1 & X & 1 \\ 1 & 1 & 3X \end{vmatrix} = 0$
	1 1 3X
4	Write down Minors and Cofactors of each element of the Matrix
	(0 1 2)
	$ \begin{bmatrix} 0 & 1 & 2 \\ 2 & 4 & 6 \\ 2 & 7 & 1 \end{bmatrix} $
5	Solve the Equation
	3 3 7
	1 7 31 = 0
	$\begin{vmatrix} 3 & 3 & 7 \\ 1 & 7 & 31 \\ 9 & 12 & 2X+1 \end{vmatrix} = 0$

SEMESTR IV I.T.IN BUSINESS MANAGEMENT-II ROLL NO.2025

QUE 1	EXPLAIN THE FUNCTIONAL SUBSYSTEM OF MIS IN DETAIL.
QUE2	WHAT ARE THE ADVANTAGES OF e-CRM?
QUE 3	WRITE SHORT NOTE ON DATA MINING.
QUE4	DISCUSS ON e-SCM ARCHITECTURE WITH SUITABLE DIAGRAM.
QUE5	WRITE SHORT NOTE ON BPO BUSINESS MODEL.

FOUNDATION COURSE ROLL NO 2025

- 1 What are the advantages of Business ethics?
- 2. What are the types of unethical Advertisement?.
- 3 What are the ethics of Finance Manager?
- 4. Explain Cadbury committee report.
- 5 What is the Scope of Corporate Social Reasonability?

BUSINESS ECONOMICS II ROLL NO.2025

- 1. Explain circular flow of national income in a three sector model.
- 2. Explain the concept of effective demand in detail.
- 3. Explain Ricardian theory of international trade.
- 4. Write a note on structure of union budget.
- 5. What are advantages and disadvantages of flexible exchange rate.

BUSINESS RESEARCH METHODS ROLL NO.2025

- 1. How can questionnaire be classified
- 2. What are the essentials of data interpretation
- 3. Explain the significance of processing data
- 4. What are the various types of research reports.
- 5. Significance of Z distribution.

SCM

ROLL NO.2149

- 1. What are the key element in Strategic Cost Management?
- **2.** Explain the types of Profit Center.
- **3.** Explain any 5 Wastage to be eliminated.
- 4. Explain TQM
- 5. Stages of Life cycle Costing

SCM

ROLL NO.2104

- 6. Explain Six sigma
- 7. Write a short note on BEP
- 8. Evaluation of Profit Centre and Investment Centre
- 9. Different aspects of Strategic Cost Management
- 10. Write a short note on Activity Based Management

PTQM

ROLL.NO.2025

- 1. What are the factors to be considered at the time of designing plant layout?
- 2. Explain the function of inventory.
- 3. What is Plant Layout? Explain the principles of a good layout?
- 4. Explain Philip Crosby's philosophy and approach to Quality.
- 5. Write a notes on Inventory management.

FINANCIAL INSTITUTION AND MARKETS ROLL NO 2104

- 1. Describe Microfinance.
- 2. What is Foreign Exchange Market?
- 3 Explain Bill Discounting.
- 4. State Gilt Edged Market
- 5. What are Non Banking Financial Companies?