

PRAHLADRAI DALMIA LIONS COLLEGE OF COMMERCE & ECONOMICS ISO 9001: 2015 Certified

<u>NOTICE</u>

Date: 9/4/2022

B.Sc. (Information Technology)

ATKT Internal/Practical Examination April 2022 Semester I

INSTRUCTIONS FOR THE STUDENTS HAVING ATKT

IN INTERNALS / PRACTICALS

- 1. Date of Submission of the Projects- 20th April, 2022 at 11am in Classroom FT2 (Fourth Floor).
- 2. Project/ assignment has to be handwritten on A4 size paper or Foolscap paper. On top of every page a student should write his name, Seat No. and Subject.
- 3. Students are expected to write the question followed by the answer.
- 4. On the date of submission there will be viva voce on the given questions. If the student does not submit his/her assignment/project or does not give his viva voce then he will be declared as **ABSENT.**
- 5. Any submission after the above mentioned date and time will not be accepted and entertained under any circumstance.
- 6. On the date of viva voce the dress code will be formal
- 7. Those students who had FILLED THE FORM & PAID THE FEES and still have NOT been allocated questions in the following list, please send a mail along with attachment of fee receipt to <u>bscit@dalmialionscollege.ac.in</u> on or before 15th April 2022 12.00 noon.

CHAMPENNE

Prof.Rupali Mishra (Coordinator)

Prof. Durgesh Kenkre (Exam convener)

Prof. Subhashini Naikar (Vice- Principal, SFC)

Dr. Kiran Mane (I/c Principal)

DI/R-IPS/EXAM/00

Semester I (Internal Exam)

Subject : Imperative Programming

Roll No	Name of the Student SHARMA ROSHNI RAMNIWAS		
105	 a. Explain the different types of programming language. b. Explain the different steps in the program development cycle. c. Draw the flowchart and pseudo code of program that doubles a number. d. Describe the structure of a C program. e. What are the various data types in C? Explain them. 		
	JENCY ANTHONY SWAMY		
150	 a. Write a program in C to swap two numbers without using third variable. b. Describe the five arithmetic operators in C. c. Explain the conditional operator in C. d. Explain the getchar and putchar functions used in C programming language. e. Write a short note on scanf function. 		
	YADAV SANDEEP JAYPRAKASH		
167	 a. Explain the term pointers with an example. b. Write a C program to perform addition of two pointer variable. c. Write a short note on pointer arithmetic. d. Differentiate between structure and union. e. What is an array within the structure and array of structure? 		
	ANSARI MAHFOOZ SHAMIM MOHD.		
169	 a. Write the use of break, continue and goto statements. b. Write a C program to find the sum of natural numbers using recursive function. c. Define looping. Compare different types of looping statements. d. Write a short note on C library functions. e Write a C program to check whether the entered number is Armstrong or not. 		

Subject : Digital Electronics

Roll Name of the Student		
	SHARMA ROSHNI RAMNIWAS	
	 a. Implement full adder circuit using 8:1 MUX. b. Cascade Demultiplexer. Build 1:8 demux using 1:4 demux chips. c. Y = A + B + C. Realize using a multiplexer. d. Draw logic circuit diagram of D flip flop and describe with a truth table the working of it. e. How SR flip-flop can be used to work as T flip-flop? Explain. 	
105		
149	YADAV SURAJ SABHAJEET	

	100	Convert the following
	10.	(i) $(1051.36)_{ij} = (2)_{ij}$
		(i) $(E0A DS)_{ij} = (2b)_{ij}$
	h	(ii) (PALID) = (cho) What is Hamming code? A server bit over partity hamming code is measured as [11010].
	- U.	What is the correct code?
	100	Cortain number cyclem has base 7. What is the heradecimal equivalent of the minimum
		and maximum number that is averaged using the base 7 and four birds.
	12	Solve the following
	<i>u.</i>	(i) $(111000 01) = (100111 00)$
		(i) $(1010101)_{12} = (100111.00)_{12}$
		Parform the following
	1.89	(3) $(727)_{*} + (735)_{*}$
		(ii) $(CC48)_{ij} = (0AA)_{ij}$ using 1C method
	e.	Solve the following
	.1	(i) Convert the following number to BCD and add them (11), + (0).
		(i) Convert the following number to BCD and add meth $(11)_{10} + (9)_{10}$
		(ii) Convert the following number to XS and subtract them $(55)_{10} - (26)_{10}$
	VANJ	ARE AAKANKSHA ANIL
	23	Design modulo 6 ripple counter.
	b	Design 4 bit binary un/down counter with control input of un/down
	C.	Implement synchronous counter using IK FF for state diagram shown in Gouve
		and the second many second configuration of the second sec
		$(0) \rightarrow (3) \rightarrow (2)$
	1.0	
	d.	write a short note on buller register.
155	e.	Explain working of SIPO register.

Subject : Operating Systems

Roll No	Name of the Student		
105	 SHARMA ROSHNI RAMNIWAS a. What is Operating System? Explain the role of operating system as extended machine. b. Write a short note on Fifth Generation of Operating System. c. Explain multithreaded and multi-core chips. d. Using suitable diagram explain the structure of disk drive. e. Write a short note on Process Model. 		
118	 KOKARE TANMAY VIJAY a. Explain the concept of running multiple programs without memory abstraction. b. How swapping helps to hold large programs in RAM? Explain Using suitable diagram. c. Explain Clock page replacement algorithm using suitable example. d. List and explain any five operations performed on Files. e. Explain the Unix V 7 File system. 		
149	YADAV SURAJ SABHAJEET		

	 a. What are block devices and character devices? Explain. b. Write a short note on Memory Mapped IO c. Explain Direct Memory Access using suitable diagram. d. Explain preemptable and non-preemptable resources. e. List Coffman's four conditions that must hold for a resource to be in deadlock.
	VANJARE AAKANKSHA ANIL
	 a. Explain the kernel structure of Linux. b. List and explain any five file-system related system calls in Linux. c. Using suitable diagram explain the architecture of Android Operating System. d. Explain the programming layers in modern windows operating System. e. Explain the booting process of windows OS.
155	
	YADAV SANDEEP JAYPRAKASH
	 a. What is an Operating system? Explain its functions. b. List and explain the system calls for file management. c. With suitable diagram explain the structure of disk drive, d. List various states of processes. Explain with neat diagram. e. What is race condition? How mutual exclusion handles race condition?
167	

Subject : Discrete Mathematics

Roll No	Name of the Student		
	SHARMA ROSHNI RAMNIWAS a. A relation <i>R</i> from R to R as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$, $x R y \Leftrightarrow y = 2 x $.		
105	 b. A relation T on Z (the set of all integers) is defined as follows: For all integers m and n, mTn ⇔ 31 (m-n). Is T reflexive? Is T symmetric? Is T transitive? Prove. c. If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either [a] ∩ [b] = Ø or [a] = [b]. d. State and prove the handshake theorem. e. Show that the graph below does not have an Euler circuit. 		
149	YADAV SURAJ SABHAJEET		

a.	Prove that $n! + 2$ is divisible by 2, for all integers $n \ge 2$.
b.	Prove that 7^n-1 is divisible by 6, for each integer $n \ge 0$.
c.	Let A = {0, 1, 2, 3, 4}, and define functions f : A \rightarrow A and g : A \rightarrow A as follows: For each x \in A, f (x)={x + 4} ² mod 5 and g(x)={x ² + 3x + 1} mod 5. Is f = g? Explain.
d.	Define g: Z \rightarrow Z by the rule g(n) = 4n - 5, for all integers n.
	 i. Is g one-to-one? Prove or give a counterexample. ii. Is g onto? Prove or give a counterexample.
e.	Explain
	i. One-one function ii. Onto function iii. Inverse of a function iv. Cardinality v. Composite function

Name of the Student	
SHARMA ROSHNI RAMNIWAS	
Write short note on :	
(i) Radio as a Mode of Communication.	
(ii) Mans and Charts on a Madium of New Vol 1 0	

Roll

No

Subject : Communication Skills

	Write short note on :		
	(i) Radio as a Mode of Communication.		
	(ii) Maps and Charts as a Medium of Non Verbal Communication.		
	(iii) The Features of Effective Communication		
	(iv) Significance of Communication in an Organisation		
	(v) Criteria in choosing the Methods of Communication.		
105			
	YADAV SURAJ SABHAJEET		
	Write short notes on any one of the following :		
	(i) Clarity in Effective Communication		
	(ii) Courtesy in Effective Communication		
	Distinguish between oral and written communication.		
149	What are effective strategies of effective communication ?		

ROLL				
NO	NAME OF STUDENT			
	DWIVEDI RAVI MAHAVIR			
	1. Write a program to find the factorial of a number using recursive function.			
111	2. Write a program to find the largest value that is stored in the array.			
	GUPTA SATYAM KUMAR			
	1. Write a program to demonstrate the use of pointers.			
112	2. Write a program to perform addition and subtraction of two pointer variables.			
	KADAM SHWETA NITIN			
	1. Write a program to find whether a given number is palindrome or not.			
115	2. Write a program to reverse the digits of an integer.			
	KOKARE IANMAY VIJAY			
	1. Write a program to check whether the number is even or odd.			
118	2. Write a program to find the volume of a cube, sphere, and cylinder.			
	SHAH SWAIT RAVINDRA			
1.4.1	1. Write a program to find the addition, subtraction, multiplication and division of two numbers.			
141	2. White a program to display the message HEELO WORED.			
	1 Write a program to declare some variables of type int float and double. Assign some			
	values to these variables and display these values			
	2 Write a program to find the addition subtraction multiplication and division of two			
1/12	2. Write a program to find the addition, subtraction, multiplication and division of two			
145				
	1 Write a program to swap two numbers without using third variable			
1/10	2. Write a program to find the area of rectangle, square and circle			
140				
	1 Write a program to enter a number from the user and display the month name. If			
	number >13 then display invalid input using switch case			
1/10	2 Write a program to find the factorial of a number			
145				
	1 Write a program to check whether the entered number is prime or not			
150	2. Write a program to find the largest of three numbers			
150				
	1 Write a program to reverse the digits of an integer			
152	2. Write a programs to print the Eibonacci series			
152				
	1 Write a program to find the reverse of a number			
	 Write a program to check whether the entered number is Armstrong or not 			
168	2. Write a program to theter whether the entered humber is Armstrong of hot.			
108				
	1 Write a program to count the digit in a number			
160	2. Write a program to find the factorial of a number using recursive function			
109	2. Write a program to find the factorial of a number using recursive function.			
170	PAL SALISH DINESH			
1/0	I. White a program to demonstrate the use of pointers.			

2.	Write a program to	perform addition an	d subtraction of two	pointer variables.
----	--------------------	---------------------	----------------------	--------------------

Subject : Operating Systems (Practical) Note : Write the answer with Aim, Code, and Output screenshot.

ROLL			
NO	NAME OF STUDENT		
	BELEL PRATHAM SAMEER		
	1. Installation of virtual machine software.		
	2.	Working with Notepad	
104			
	CHAVAN HARSHAL VASANT		
	1.	Windows (DOS) Commands – Diskcomp, diskcopy, diskpart, doskey, echo	
108	2.	Working with Paint	
	DWIVE	DI RAVI MAHAVIR	
	1.	Windows (DOS) Commands – Edit, fc, find, rename, set, type, ver	
111	2.	Installation of Linux operating system (RedHat / Ubuntu) on virtual machine.	
	GUPTA SATYAM KUMAR		
	1.	Installation of Windows operating system on virtial machine.	
112	2.	Working with Wordpad	
	KOKARE TANMAY VIJAY		
	1.	Installation of Linux operating system (RedHat / Ubuntu) on virtual machine.	
118	2.	Windows (DOS) Commands – Date, time, prompt, md, cd, rd, path.	
	SINGH ASHWINI HARENDRA		
	1.	Windows (DOS) Commands – Date, time, prompt, md, cd, rd, path.	
148	2.	Working with Paint	
	YADAV SURAJ SABHAJEET		
	1.	Installation of Windows operating system on virtial machine.	
149	2.	Windows (DOS) Commands – Chkdsk, copy, xcopy, format, fidsk, cls, defrag, del, move.	
	PAL RAHUL AWADHNARAYAN		
	1.	Installation of virtual machine software.	
169	2.	Using the browsers	
	PAL SA	TISH DINESH	
	1.	Various options in Taskbar	
170	2.	Windows (DOS) Commands – xcopy, format, fidsk, cls, defrag, del, move.	

Subject : Digital Electronics (Practical) Note : Write the answer with Aim, Code, and Output screenshot.

ROLL	
NO	NAME OF STUDENT
	CHAVAN HARSHAL VASANT
108	1. Study of AND, OR, NOT, XOR, XNOR, NAND and NOR gates

	2.	Implement the given Boolean expressions using minimum number of gates - Verifying	
		De Morgan's laws.	
	DWIVEDI RAVI MAHAVIR		
	1.	Implement the given Boolean expressions using minimum number of gates -	
		Implement other given expressions using minimum number of gates.	
111	2.	Implement other given expressions using minimum number of ICs.	
	GUPTA SATYAM KUMAR		
	1.	Design and implement Binary – to – Gray code converter.	
112	2.	Design and implement a 2-bit by 2-bit multiplier.	
	KOKAR	E TANMAY VIJAY	
	1.	Design and implement 4:1 multiplexer. Study of IC 74153, 74157	
118	2.	Implement the given expression using IC 74151 8:1 multiplexer.	
	SINGH	ASHWINI HARENDRA	
	1.	Design and implement a 2-bit comparator.	
148	2.	Design and implement Binary – to – BCD code converter	
	YADAV	SURAJ SABHAJEET	
	1.	Implement other given expressions using minimum number of gates.	
	2.	Study of Logic gates and their ICs and universal gates:IC 7400, 7402, 7404, 7408, 7432,	
149		7486, 74266	
	VISHW	AKARMA KHUSHBOO MUNNA	
	1.	Implement AND, OR, NOT, XOR, XNOR using NAND gates.	
	2.	Design and implement combinational circuit based on the problem given and	
	3.	minimizing using K-maps.	
159	4.		
	PAL SATISH DINESH		
	1.	Design and implement Binary – to – Gray code converter.	
170	2.	Design and implement XS – 3 adder.	

<u>Subject : Discrete Maths (Practical)</u> <u>Note : Write the answer with Aim, Code, and Output screenshot.</u>

ROLL	
NO	NAME OF STUDENT
	DWIVEDI RAVI MAHAVIR
	Write the programs using SCILAB (Probability Theory)
	1. Multiplication theorem for conditional probability
111	2. Finite probability spaces

	GUPTA SATYAM KUMAR		
	Write the programs using SCILAB (Counting)		
	1. Binomial coefficients		
112	2. Combinations		
	KOKARE TANMAY VIJAY		
	Write the programs using SCILAB (Set Theory)		
	1. Power Sets		
118	2. Mathematical Induction		
	SHARMA CHIRAG SUNIL		
	Write the programs using SCILAB (Functions and Algorithms)		
	1. Polynomial evaluation		
143	2. Greatest Common Divisor		
	SINGH ASHWINI HARENDRA		
	Write the programs using SCILAB (Graph Theory)		
	1. Paths and connectivity		
148	2. Minimum spanning tree		
	YADAV SURAJ SABHAJEET		
	Write the programs using SCILAB		
	1. Finite probability spaces		
149	2. Repeated trials with two outcomes		
	TIWARI SHREERAM SANJAY		
	Write the programs using SCILAB		
	1. Product rule principle		
152	2. Permutations with repetitions		
	PAL SATISH DINESH		
	Write the programs using SCILAB		
	1. Recursively defined functions		
170	2. Greatest Common Divisor		

Subject : Communication Skills (Practical) Note : Write the answer with Aim, Code, and Output screenshot.

ROLL NO	NAME OF STUDENT
	CHAURASAIYA ANKUR RAJBAHADUR
107	Dreigst on the tonic "E Maste Management" (Minimum E nages)
107	Project on the topic E-waste Management (Minimum 5 pages)
	KOKARE TANMAY VIJAY
118	

	Project on the topic "Seven Cs of Effective Communication:" (Minimum 5 pages)
	PAL SATISH DINESH
	Project on the topic "Presentation Process" (Minimum 5 pages)
170	