Name of the Course: Computer Science Practical 4

Sr. No.	Heading	Particulars
1	Description the	Introduction:
	course:	This major practical course is a blend of two rapidly evolving areas in computing — Computer Networking and the Internet of Things (IoT). While the first part equips students with hands-on experience in network creation, routing, and traffic analysis, the second part transitions them into the world of intelligent connected devices. Students explore the design and deployment of smart systems using Raspberry Pi and Arduino kits, integrate sensors/actuators, and implement cloud-based
		interactions.
		Relevance: This course is highly relevant in today's digital world where interconnected devices and reliable communication networks form the backbone of every industry. The integration of Computer Networks and IoT ensures students gain comprehensive knowledge about both data communication and real-time embedded systems. As businesses and governments adopt automation and smart systems, professionals with expertise in both domains are in increasing demand. Usefulness: The course equips students with practical skills to configure networks, interface hardware, and use protocols for communication and control. It bridges the gap between theory and practice by allowing learners to build, simulate, and test complete systems. These hands-on experiences enhance understanding and build a strong foundation for advanced learning or employment. Application:
		Application: The knowledge gained in this course can be directly applied to developing IoT systems like smart homes, environmental monitoring, health devices, and automated machinery. Students also learn to simulate network infrastructures and deploy routing protocols, which are essential in setting up enterprise-level networks. Real-world applications of this course span domains such as
		agriculture, transportation, education, and urban planning. Interest: This course captures students' interest through interactive hardware activities like blinking LEDs, controlling motors, and streaming sensor data. Tools like Cisco

		Packet Tracer, Node-RED, and Wireshark provide
		engaging visual and analytical insights into networking
		and IoT systems. Students are encouraged to innovate and
		experiment, keeping the learning experience dynamic and
		enjoyable.
		Connection with Other Courses:
		The course complements core subjects such as Computer
		Networks, Microprocessor and Embedded Systems,
		Operating Systems, and Web Programming. It allows
		students to apply concepts from these theory courses in a
		practical setup, promoting interdisciplinary learning. The
		use of programming and cloud communication also ties
		into courses like Data Science and Cloud Computing.
		Demand in the Industry:
		There is a significant and growing demand for
		professionals skilled in IoT and network technologies
		across industries such as healthcare, smart infrastructure,
		manufacturing, and IT services. Companies look for
		candidates who can develop, deploy, and maintain
		systems involving both physical hardware and software
		networking components. This course provides the skillset
		that aligns with industry trends and emerging
		technologies.
		Job Prospects:
		Students completing this course are better prepared for
		roles such as IoT Developer, Network Administrator,
		Embedded Systems Programmer, and Cloud-IoT
		Integrator. They can work in sectors including telecom,
		automation, R&D, and smart technologies. The practical
		skills gained make them suitable for both core technical
		roles and interdisciplinary project teams.
2	Vertical:	Major
3	Type:	Practical
4	Credits:	2 credits (1 credit = 30 Hours of Practical work in a
		semester)
5	Hours Allotted:	60 Hours
6	Marks Allotted:	50 Marks
7	Course Objectives(CO):	
	•	proficiency in computer networking tools, commands,
	and simulation using	
	-	opologies, routing protocols (RIP, OSPF, BGP), and IP
	addressing techniques	-
	-	oply various IoT communication protocols, platforms, and
	nardware interfaces u	sing Raspberry Pi/Arduino.

- **CO 4.** Interface sensors, actuators, and edge devices for real-world IoT applications.
- **CO 5.** Integrate hardware with software tools like Node-RED and cloud platforms for complete IoT solutions.

8 Course Outcomes (OC):

After successful completion of this course, students would be able to -

- **OC 1.** Use network diagnostic and configuration commands effectively on Windows and Linux systems.
- **OC 2.** Design and simulate wired and wireless networks using Cisco Packet Tracer with IP configurations and routing protocols.
- **OC 3.** Analyze network traffic using Wireshark and identify protocol layers and data flow.
- **OC 4.** Configure and test IoT hardware platforms for device communication and data acquisition.
- **OC 5.** Implement real-time IoT applications using sensors, actuators, and cloud communication.
- **OC 6.** Develop integrated solutions using web technologies, IoT protocols, and dashboarding tools.

9 Modules:-

Module 1 (30 hours):

Practical based on Computer Networks

Exploring Networking Commands via Windows CMD / LINUX Terminal

- Execute and observe the output of: ping, traceroute / tracert, netstat, arp, ipconfig / ifconfig, getmac, hostname, nslookup, pathping, systeminfo
- Discuss the purpose and interpretation of each command's output **Learning Focus:** Understanding diagnostic and configuration commands.

Building a Basic Peer-to-Peer Network

Create a network with **two PCs** connected using a **crossover cable** using Cisco Packet Tracer

- Assign static IP addresses
- Test connectivity with ping and Packet Tracer simulation

Static IP Setup with One Server and Two Clients

Connect **1 server** and **2 computers** using a switch (Cisco Packet Tracer)

- Use static IP addresses
- Configure server services (e.g., HTTP or FTP) and test connectivity from clients

Dynamic IP Allocation with Server and Clients

Use **DHCP service** from a server to assign IPs to **two PCs** (Cisco Packet Tracer)

• Enable and configure DHCP on the server

• Verify IP allocation and connectivity using ipconfig

Creating a Mixed Network with Wired and Wireless Devices

One server, two wired PCs, and two **mobile/wireless devices** (Cisco Packet Tracer)

- Use appropriate cabling and access points
- Assign IPs and test cross-device communication

RIP Version 1 Routing Across Three Routers

Three routers, each connected to at least three PCs (Cisco Packet Tracer)

- Implement **RIPv1** routing between routers
- Verify inter-network connectivity using ping and route tables

RIP Version 2 Implementation

Three routers, each connected to at least **three PCs** (Cisco Packet Tracer)

- Enable **RIPv2** and observe subnet mask handling
- Use Packet Tracer's simulation mode to observe routing updates

OSPF Routing and Network Hierarchies

Three routers and their networks using **OSPF**

(Three routers, each connected to at least three PCs (Cisco Packet Tracer)

- Assign area IDs, router IDs, and enable OSPF
- Monitor OSPF neighbour relationships and path selections

BGP for Inter-domain Routing

Three autonomous systems (AS) with routers running **BGP** Three routers, each connected to at least **three PCs** (Cisco Packet Tracer)

- Configure BGP with different AS numbers
- Establish peerings and test inter-AS communication

Protocol Analysis with Wireshark

- Set up network transactions for each protocol:
 ICMP (ping), TCP (web browsing), HTTP (via browser), UDP (DNS), FTP (file transfer)
- Apply filters and observe packet contents

Module 2 (30 hours):

Practical based on IoT Technologies

Preparing the IoT Hardware

- Set up Raspberry Pi OS / Arduino IDE
- Configure GPIO settings and test basic connectivity
- Demonstrate pin layout and onboard peripherals

GPIO – Light the LED (with and without Button)

- Blink LED using Python (Raspberry Pi) or C++ (Arduino)
- Add a push button to toggle LED ON/OFF

SPI Interface – Camera Module Integration

- Connect a Pi camera module (or SPI camera for Arduino)
- Capture an image or short video
- Store file or stream it locally

8x8 LED Grid Control (Matrix LED Programming)

- Connect an 8×8 LED matrix module
- Program animations or scrolling text patterns
- Explore logical formulas for patterns

PWM – Stepper Motor Control

- Interface a stepper motor using a motor driver
- Control direction and vary speed using PWM signals
- Observe effect of duty cycle changes on motor movement

Node-RED for IoT Dashboard

- Install and configure Node-RED on Raspberry Pi
- Create a flow to turn LED ON/OFF via browser
- Add visual interface for sensor data (e.g., temperature)

Sensor Integration – Analog & Digital Sensors

- Interface multiple sensors (LDR, DHT11, Gas)
- Collect and display data on serial monitor / OLED / LCD
- Trigger actions (e.g., fan ON if temp > threshold)

Web Trigger – Control GPIO from Web Server

- Host a simple Flask web app (Raspberry Pi) or ESP Web Page (Arduino)
- Control a set of LEDs via buttons on a webpage
- Ensure real-time response and feedback

IoT Protocol – Send Sensor Data Online

- Use HTTP or MQTT to push sensor values to a cloud server (e.g., Thingspeak)
- Implement publishing logic with timestamps
- Use Arduino/NodeMCU or Raspberry Pi as the publisher

	Integration – Smart Monitoring System			
	Combine sensors, actuators, communication protocol, and web/cloud			
	Example: A Smart Weather Station that logs temp/humidity online and triggers fan/LED alerts			
	Note: The above practicals can be performed on Raspberry Pi Kits and / or Arduino kits as per the need			
10	Text Books			
	1. Kurose, J.F. & Ross, K.W. (2021). <i>Computer Networking: A Top-Down Approach</i> (7th ed.). Pearson Education India.			
	2. Ramya, V., & Shanmuga Priya, K. (2019). <i>Practical Internet of Things: Concepts, applications and security</i> . Chennai: Wiley India Pvt. Ltd.			
11	Reference Books			
	1. Forouzan, B.A. (2017). Data Communications and Networking (5th ed.).			
	McGraw Hill Education India.			
	2. Bahga, A. & Madisetti, V. (2014). Internet of Things: A Hands-on Approach.			
	Universities Press India.			
12	Internal Continuous Assessment: 40% Semester End Examination: 60%			